Skip to contents

Approximate Bayesian Computation

validate_abc()
Validate individual components of an ABC model
simulate_abc()
Simulate data for ABC inference using specified priors
run_abc()
Perform ABC on data generated by simulate_abc

Grid-based inference

simulate_grid()
Simulate values of summary statistics across a parameter grid

ABC cross-validation and posterior checks

unpack()
Unpack demografr object into individual components of the abc package
cross_validate()
Run cross-validation routines of the abc R package
select_model()
Perform selection between different ABC models
predict(<demografr_abc.abc>)
Generate summary statistics from the inferred posterior distribution of parameters
extract_prediction()
Unnest the predicted values of a given statistic from the simulated data
plot_prediction()
Plot the results of a posterior predictive check for a given summary statistic

Analysis of ABC inference results

extract_summary()
Extract table of estimated model parameters
extract_posterior()
Extract inferred posterior(s) as a standard data frame
plot_prior()
Plot prior distribution(s)
plot_posterior()
Plot posterior distribution of given parameters
plot(<demografr_abc.abc>)
Plot diagnostics of posterior distribution(s)
hist(<demografr_abc.abc>)
Plot histogram of posterior distribution(s)

Helper functions

summarise_data()
Apply summary statistic functions to the simulated data
simulate_model()
Simulate a single tree sequence from the given inference setup
combine_data()
Combine multiple individual ABC simulation runs into one
sample_prior()
Sample value from a given prior sampling formula object