Skip to contents

Extract estimated model parameters in a tabular format

Usage

extract_summary(abc, param = NULL)

Arguments

abc

ABC object generated by run_abc

param

A character vector containing either parameter names to summarize, or a regex-like matches to be used for subsetting. If NULL (the default), all parameters will be extracted.

Value

A data frame object with posterior summary statistics

Examples

# read example ABC result with an inferred joint posterior distribution
abc_res <- readRDS(system.file("examples/basics_abc.rds", package = "demografr"))

extract_summary(abc_res)
#> Warning: Selecting bandwidth *not* using 'weights'
#> Warning: Selecting bandwidth *not* using 'weights'
#> Warning: Selecting bandwidth *not* using 'weights'
#> Warning: Selecting bandwidth *not* using 'weights'
#> Warning: Selecting bandwidth *not* using 'weights'
#> Warning: Selecting bandwidth *not* using 'weights'
#> Warning: Selecting bandwidth *not* using 'weights'
#> Warning: Selecting bandwidth *not* using 'weights'
#>                            Ne_A      Ne_B      Ne_C     Ne_D      T_AB     T_BC
#> Min.:                  1492.557  526.6231  6373.061 2254.591  859.5749 5131.473
#> Weighted 2.5 % Perc.:  1774.758  672.5853  7344.040 2895.795 1318.3159 5595.637
#> Weighted Median:       2032.148  848.1467  8553.144 3814.660 1934.0008 6136.188
#> Weighted Mean:         2021.722  838.5594  8678.066 3804.614 1954.3343 6112.305
#> Weighted Mode:         2054.933  861.3408  8428.777 3721.917 1933.3694 6230.341
#> Weighted 97.5 % Perc.: 2270.334 1003.8421 10162.320 4530.273 2522.5919 6611.315
#> Max.:                  2438.657 1047.0935 12703.479 5764.139 2650.7248 6851.800
#>                            T_CD       gf_BC
#> Min.:                  6752.669 -0.04681798
#> Weighted 2.5 % Perc.:  7125.349  0.02469992
#> Weighted Median:       7835.810  0.09867650
#> Weighted Mean:         7824.532  0.10282631
#> Weighted Mode:         7851.617  0.09804401
#> Weighted 97.5 % Perc.: 8426.377  0.18467366
#> Max.:                  8476.157  0.21801675